Statistical Work on Digital Economy for the U.S. National Accounts

Presented by Dylan G. Rassier

UNSD-NBS Seminar on The Digital Economy: A Policy and Statistical Perspective

Beijing, China

November 15-17, 2018

Focus on Two Areas of Preliminary Work

- Digital Economy Satellite Account
- Treatment of Data in National Accounts

Digital Economy Satellite Account

(Barefoot, Curtis, Jolliff, Nicholson, Omohundro 2018)

Step 1: Conceptual Definition

- **Digital-enabling infrastructure**: Goods and services needed for an interconnected computer network to exist and operate
 - Computer hardware
 - Telecom equipment and services
 - Internet of Things (IoT)

- Software
- Structures
- Support services

Step 1: Conceptual Definition

- **Digital-enabling infrastructure**: Goods and services needed for an interconnected computer network to exist and operate
 - Computer hardware

Software

Telecom equipment and services

- Structures

Internet of Things (IoT)

- Support services
- **E-commerce**: Digital transactions that use the computer system
 - Business-to-business (B2B)

– Peer-to-peer (P2P)

Business-to-consumer (B2C)

Step 1: Conceptual Definition

- Digital-enabling infrastructure: Goods and services needed for an interconnected computer network to exist and operate
 - Computer hardware

Software

Telecom equipment and services

- Structures

Internet of Things (IoT)

- Support services
- **E-commerce**: Digital transactions that use the computer system
 - Business-to-business (B2B)

– Peer-to-peer (P2P)

- Business-to-consumer (B2C)
- Digital media: Content that users create and access
 - Direct sale

Big data

Free

Steps 2 and 3: Identification

- Step 2: Identify digital goods and services
 - 200 categories of primarily digital products
 - Exclude categories that include digital and non-digital
 - Exclude structures and IoT infrastructure
 - Exclude P2P transactions
 - Exclude advertising-supported "free" digital media and big data

Steps 2 and 3: Identification

• Step 2: Identify digital goods and services

- 200 categories of primarily digital products
 - Exclude categories that include digital and non-digital
 - Exclude structures and IoT infrastructure
 - Exclude P2P transactions
 - Exclude advertising-supported "free" digital media and big data

• Step 3: Identify digital industries

Gross output: Sum of gross output for all in-scope products

Value-added
 Derived from ratios of digital

Compensation economy gross output to total

Employment ___ gross output

Price and quantity indexes: Double deflation method

Results: Growth Rates

	Average Annual Growth		
	Total Economy	Digital Economy	
Gross Output	1.1%	4.4%	
Value-Added	1.5%	5.6%	
Prices	1.5%	-0.4%	
Employment	1.7%	3.7%	

U.S. Bureau of Economic Analysis

Results: Share of GDP

Share of total gross domestic product, 2016

The digital economy accounted for 6.5% (\$1.21 trillion) of total U.S. GDP in 2016.

Results: Employment

11

Share of total employment, 2016

Results: Compensation of Employees

Average annual compensation per employee in the digital economy totaled \$114,275 in 2016 compared to \$66,498 for the total economy.

12

Treatment of Data in National Accounts

SNA Recommendations on Data

- Databases are within scope of the SNA asset boundary
 - Exclude value of data in own-account databases
 - Include value of data in market purchases of databases

SNA Recommendations on Data

- Databases are within scope of the SNA asset boundary
 - Exclude value of data in own-account databases
 - Include value of data in market purchases of databases
- Data as capital formation
 - Canberra II Group focused on data as a knowledge asset (Ahmad 2004, 2005 and Ahmad and Schreyer 2016)
 - Is data a knowledge asset or an information asset like R&D?

SNA Recommendations on Data

- Databases are within scope of the SNA asset boundary
 - Exclude value of data in own-account databases
 - Include value of data in market purchases of databases
- Data as capital formation
 - Canberra II Group focused on data as a knowledge asset (Ahmad 2004, 2005 and Ahmad and Schreyer 2016)
 - Is data a knowledge asset or an information asset like R&D?
- No guidance on data as intermediate consumption
 - May be exchanged in traditional B2B transactions
 - May be exchanged in non-traditional C2B transactions

Considerations for Data

- Ownership of data may depend on institutional factors
 - Who should have access?
 - How should access be managed?

Considerations for Data

- Ownership of data may depend on institutional factors
 - Who should have access?
 - How should access be managed?
- Non-rival features of data
 - Supply-use identity does not hold (Mandel 2017)
 - Non-scarcity: fusion, no wear and tear

Considerations for Data

- Ownership of data may depend on institutional factors
 - Who should have access?
 - How should access be managed?
- Non-rival features of data
 - Supply-use identity does not hold (Mandel 2017)
 - Non-scarcity: fusion, no wear and tear
- Third product category for data (Mandel 2012, 2017)
 - Goods: tangible and storable
 - Services: intangible and non-storable
 - Data: intangible and storable

- Marketing
 - Users exchange data for "free" content

- Marketing
 - Users exchange data for "free" content
- Artificial intelligence
 - Output = f(capital, labor, data)

- Marketing
 - Users exchange data for "free" content
- Artificial intelligence
 - Output = f(capital, labor, data)
- Internet of Things (IoT)
 - "Smart" devices

- Marketing
 - Users exchange data for "free" content
- Artificial intelligence
 - Output = f(capital, labor, data)
- Internet of Things (IoT)
 - "Smart" devices
- Online platforms (Li, Nirei, Yamana 2018)
 - Summarize business models for 8 types of platforms

Data Value Chain

	1.CREATION (Data Capture)	2.STORAGE (Data warehouse)	3.PROCESSING (Data mining & fusion)	4.CONSUMPTION (Visualization & Sharing)	5.MONETIZATION (business plan)
VOLUME	++++	+++	+++	+	+
VELOCITY	+++	+++	+++	++	+
VARIETY	+++	+	++++	++	+
VERACITY	+	+	++++	++++	+4
VALUE	+	+	++	+++	++++

Source: Moro Visconti et al. 2017

Financials for FATWINs and MAGAs

Source: SEC filings and YCharts

Stats Canada-BEA Collaboration on Data

Five Questions

- What is the role of data in a modern economy?
- What is an appropriate typology of data?
- What is the current state of play in valuing data in the national accounts and how are data valued by the private and public sectors?
- What are the different methods that national statisticians could use to assign a value to data?
- What specifically is the value of data in Canada and the United States?

Stats Canada-BEA Collaboration on Data

Five Questions

- What is the role of data in a modern economy?
- What is an appropriate typology of data?
- What is the current state of play in valuing data in the national accounts and how are data valued by the private and public sectors?
- What are the different methods that national statisticians could use to assign a value to data?
- What specifically is the value of data in Canada and the United States?
- Typology for online platforms (Li, Nirei, Yamana 2018)

References

- Ahmad, Nadim. 2004. "The Measurement of Databases in the National Accounts." Issue paper prepared for the December 2004 Meeting of the Advisory Expert Group on National Accounts.
- Ahmad, Nadim. 2005. "Follow-Up to the Measurement of Databases in the National Accounts." Issue paper prepared for the July 2005 SNA Update Issue 12.
- Ahmad, Nadim and Paul Schreyer. 2016. "Measuring GDP in a Digitalized Economy." OECD Statistics Working Paper 2016/07.
- Barefoot, Kevin, Dave Curtis, William Jolliff, Jessica R. Nicholson, and Robert Omohundro. 2018. "Defining and Measuring the Digital Economy." BEA Working Paper: https://www.bea.gov/system/files/papers/WP2018-4.pdf.
- Li, Wendy, Makoto Nirei, and Kazufumi Yamana. 2018. "Value of Data: There is no such thing as a free lunch in the digital economy." Paper prepared for the 2018 IP Statistics for Decision Makers Conference.
- Mandel, Michael. 2012. "Beyond Goods and Services: The (Unmeasured) Rise of the Data-Driven Economy." Policy Memo of the Progressive Policy Institute.
- Mandel, Michael. 2017. "The Economic Impact of Data: Why Data is not Like Oil." Paper of the Progressive Policy Institute.
- Moro Visconti, Roberto, Alberto Larocca, and Michele Marconi. 2017. "Big Data-Driven Value Chains and Digital Platforms: From value co-creation to monetization," in *Big Data Analytics*, Arun K. Somani and Ganesh Chandra Deka, eds., Chapter 16.
- Nijmeijer, Henk. 2018. "Issue Paper on Databases." Paper prepared for the Joint Eurostat-OECD Task Force on Land and Other Non-Financial Assets.