

Data Dissemination and communication

Duncan Millard, Chief Statistician

Beijing, 23rd - 25th May 2018

- Why dissemination is important
- Charts the basics of visualization
- Specific issues with communication on:
 - renewables and
 - energy efficiency

- Principle 1. Official statistics provide an indispensable element in the information system of a democratic society, serving the Government, the economy and the public with data about the economic, demographic, social and environmental situation. To this end, official statistics that meet the test of practical utility are to be compiled and <u>made available on an impartial basis by official statistical agencies</u> to honour citizens' entitlement to public information.
- Principle 2. To retain trust in official statistics, the statistical agencies need to decide according to strictly professional considerations, including scientific principles and professional ethics, on the methods and procedures for the collection, processing, storage and presentation of statistical data.
- Principle 3. To facilitate a correct interpretation of the data, the statistical agencies are to present information according to scientific standards on the sources, methods and procedures of the statistics.
- Principle 4. The statistical agencies are entitled to comment on erroneous interpretation and misuse of statistics.

- The dissemination policy should be user oriented, reaching and serving all user groups, including format, and provide quality information
- While recognizing the importance of statistical confidentiality, countries should implement those rules in a way to promote access to data while ensuring confidentiality
- Countries make their energy data available on a calendar period basis
- For international comparability, countries which use the fiscal year, should undertake efforts to report annual data according to the calendar year
- Countries announce in advance the precise dates when energy statistics will be released

- Release dates:
 - monthly data, within 2 calendar months
 - quarterly data within 3 calendar months after the end of the reference quarter;
 - annual data within 15 calendar months after the end of the reference year
- Countries are encouraged to harmonize their data with international standards
- It is recommended that countries disseminate their energy statistics internationally as soon as they become available to national users and without any additional restrictions.
- a glossary of terms should always accompany the disseminated tabulations of energy statistics.

- Relevant
- Reliable
- Timely
- Consistent
- Cost efficient
- Comparable over time
- Comparable between countries, provinces, cities... according to needs
- Used!

Everyone can understand a good chart!

01. Australia

Natural gas: Production (ktoe)

The first stats chart? - William Playfair, 1821

Source: 1821 and 1824 editions Chronology of Public events and Remarkable Occurrences via RSS Significance

Good chart?

Shares of Space Heating by Fuel

Good chart?

Household area per capita and personal consumption expenditure, 1990 – 2004

UK Energy consumption by main industrial groups 2009

UK Energy Consumption by main industrial groups 2009

Source: Energy Consumption in the UK 2010

The evolution of energy demand, 1971-2016

World TPES from 1971 to 2015 (Mtoe)

IEA Association countries have seen over a 6 fold increase in energy demand in 40 years

Specific issues with communication on: renewables

Annual growth rates of world renewables supply from 1990 to 2015

Source: IEA, Renewables information, 2017

Using and understanding the energy balance

iea

Transformation

			N	filion tonne	s of oil equ	ivalent					
SUPPLY AND CONSUMPTION	Coal & peat	Crude oil	Oil products	Natural Gas	Nuclear	Hydro	Geotherm. solar etc.	Biofuels & waste	Electricity	Heat	Total
Production	3596.04	4069.38		2719 10	718.96	295.62	112.02	1277.08		1.04	12789.25
Imports	640.82	2295.05	1053 71	817.02				10.78	51 38	0.00	4858 77
Exports	-681.28	-2211.55	-1111.80	-826.35				.9.29	-50.74	-0.01	-4891.01
Stock changes	-79.80	6.49	6,16	17.84				-0.54			-49.86
TPES	3475.77	4159.37	-51.93	2727.61	718.96	295.62	112.02	1278.03	0.64	1.04	12717.16
Transfers	0.00	-156.64	179.33				1				22.69
Statistical differences	-49.50	11.30	-27.05	-1.68	-	-	0.00	-0.40	1.43	-1.24	-67.14
Electricity plants	-1974.84	-34.63	-201.57	-705,47	-715.67	-295.62	-88.61	-63.40	1671.71	-0.37	-2408.47
CHP plants	-161.19	-0.01	-22.50	-304.76	-3.13	100 100 100	-1.06	-35.21	171.56	150.84	-205.45
Heat plants	-103.61	-0.81	-12.92	-90.14	-0.15		-0.22	-10.42	-0.34	189.23	-29.38
Blast fumaces	-168.50		-0.79	-0.11		-					-169.40
Gas works	-8.80	-	-3.53	2.81	-	-		-0.02	•	-	-9.54
Coke/pat.fuel/BKB plants	-51.08	1	-2.40	-0.00	-	-		-0.01	•	-	-53.49
Cil refineries		-3964.42	3921.30	-0.80	-	-			• 3	-	-43.92
Petrochemical plants		30.51	-31.35		-	-	-		• • •	-	-0.84
Liquefaction plants	-16.20	7.85		-7.10							-15.45
Other transformation	0.01	0.13	-0.17	-2.77				-03.14		-0.39	-55.77
Energy industry own use	-86.22	-10.10	-210.37	-2/5.36			-0.13	-13.27	-155.15	-40.51	-/92.10
TEC	853 14	34 34	3535 48	1318 16			21.87	1102.01	1535.69	275.93	8676 63
INDUCTOR	677.00	47.54	240.00	463.67			0.45	405.00	636.05	435.43	2422.04
Industrief	249 74	0.03	11 35	403.07		() (Š	0.01	4 15	87.06	17.49	420.54
Chemical and networkemical	58 37	2.18	47.73	99.18			0.00	2 30	95.52	45 11	350 30
Non-formus metals	14 47	0.00	6.84	15 16	S - 12	- 2	0.00	0.11	68.40	2 97	108.95
Non-metallic minerals	176 70	0.07	36.98	50.61		5 Q	0.00	7.08	40.97	3.01	315 43
Transport equipment	4.67	0.01	3.19	11.35			0.00	0.01	18.39	4.22	41.83
Machinery	14.34	0.05	10.04	23.24	-	-	0.00	0.17	67.77	6.78	122.39
Mining and guarrying	6.93	-	16.96	15.93	-		-	0.06	23.72	2.52	66.11
Food and tobacco	22.70	0.12	26.68	37.22	-	-	0.00	29,92	34,93	11.20	162.78
Paper pulp and printing	21.66	0.01	8.08	26.06	-	-	0.15	53.10	40,87	10.88	160.79
Wood and wood products	2.71	0.01	4.78	3.30	-	-	0.00	11.58	7.89	5.87	36.14
Construction	6.12	0.05	26.92	6.38	-	-	0.00	0.16	8.00	1.78	49.41
Textile and leather	11.18	0.06	5.59	7.14	-	-	0.00	0.23	23.22	7.01	54.44
Non-specified	89.28	9.93	104.85	115.59	é	-	0.30	86.95	120.21	6.60	533.72
TRANSPORT	3.36	0.04	2195.89	89.06				57.56	23.91	-	2369.81
World aviation bunkers		-	153.65	-		-			-	-	153.65
Domestic aviation	-	-	96.42		÷					-	96.42
Road		0.03	1666.60	28.52			1.00	57.53	00.0	-	1752.68
Right internet	3.22		28.3/	60.00				0.02	18.04	-	49.60
World marine bunkner			0.43	59.99				100	2.00	-	03.31
Domestic pauloation	0.17		43.00	0.05				0.01		-	200.72
Non-specified	0.01	0.00	5 73	0.49	(C			0.00	297	-	9.21
OTHER	135.96	675	435 64	612 83	9 G	1 12	21 41	848 62	874 82	150 50	3086 53
Residential	79 65	0.55	210.54	471.08	9 G		0.47	920 70	436.34	105 77	3073 99
Comm and publi services	22.94	0.11	102.97	179.56			2.01	17.76	358 61	31.52	715 47
Acriculture/forestry	10,90	0.09	101,47	6.07	2		0.67	7.43	38.98	3.76	169.37
Fishing	0.01	-	6.23	0.02	(i i i i i i i i i i i i i i i i i i i		0.06	0.00	0.39	0.05	6.77
Non-specified	23,47	6.00	14.43	6.10	-		9.25	2.73	50.60	9.45	122.04
NON-ENERGY USE	35.97	15.05	593.93	152,40						-	797.35
in industry/transf./energy	35.63	15.05	569.93	152,40	-					-	773.01
of which: feedalocks	2.44	14.49	362.42	149.75	-	-	-	22	-	-	529.10
in transport	-	0 800 e	6.63	0.00	-	-			-	-	6.63
in other	0.33		17.38					-		-	17.71
				Electricity	and Heat O	butput					
Electr. Generated - GWh	8697512	27881	961377	4768076	2756289	3437483	449595	331679		1573	21431466
Electricity plants	8001855	27854	891872	3582493	2746188	3437483	446008	211248	1	827	19435848
CHP alants	605547	17	69505	1185583	10104		3589	120424	1.1	745	1005610
Heat Generated - T.I	5706864	26026	751349	6597544	27357		346249	761804	7495	60077	14284834
CUP obsets	3059363	20030	200046	2400055	200.44	(S	10300	434740	308	24059	63388000
Hingt plants	3648514	25820	452266	2107526	6412		225860	327464	7287	35110	7946045
a meneral preservation	JOHOG I I	20020	TOLECOO		0413	-	000000	361 104	1201	30119	1340010

World

Electricity generation by fuel

Specific issues with communication on: Energy Efficiency

World total final consumption by sector

Source: IEA, World Energy Balances, 2017

Transport's importance for energy consumption is growing

Who are the final users of electricity?

In energy balance, almost half electricity final consumption is "non-specified"

- Energy efficiency can be considered as using less energy for the same or higher output
- So measuring and presenting something that doesn't happen
- Eg replacing a 60watt lightbulb with a 10watt low energy lightbulb means around 100 kWh of electricity are not used.
- But not all energy savings are efficiency (eg the closure of a factory) and energy growth can include more use of energy efficiently
- Often need to look at a counterfactual what would have happened

Energy efficiency indicators Highlights, 2016

What drives energy intensity trends?

Source: IEA World energy balances, 2017

Efficiency progress and also other factors (mainly structural changes)

What other factors affect energy intensity?

A decrease in energy intensity is possible without any energy efficiency improvement

Understanding energy consumption drivers

Drivers of final energy consumption in IEA

Note: Analysis based on the *IEA Energy Efficiency Indicators* database (2016 edition). TFC in this analysis covers the following sectors: residential, industry and services, passenger and freight transport. It does not include agriculture, non-energy, and energy supply sectors. The energy consumption decomposed in this analysis represents 90% of TFC in IEA countries in 2015.

Energy intensity of the economy: TPES/GDP

Social media

https://twitter.com/iea

IEA 🕏 @IEA · Mar 20

iea

Try our new online resource with historical and projected data by country & region on access to electricity, access to clean cooking, & sustainability targets on renewables & energy efficiency bit.ly/2HRondD #SDG7

 \sim

IEA: Sustainable Development Goals

SDG 7: Ensure access to affordable, reliable, sustainable and modern energy for all

iea.org

Promotion of work through Twitter

OECD generation changing: gas on par with coal for first time, rise of non-hydro renewables

Outputs

Annual and quarterly Publications

Fuel Information books, World energy statistics & balances, CO₂ emissions...

Free overviews from books saw15,000 downloads in first 3 weeks

IEA website Atlas, Sankey flows...

Booklet Key World Energy Statistics

Electronic data files Data online service

✓ Keep it simple but factual

- \checkmark Who is audience, what level of numerical skill
- ✓ Charts must make point easier to understand they are the hook
- ✓ Should raise a "why" question

