

Wolfgang Bittermann Directorate R

Beijing 23 - 25 May 2018

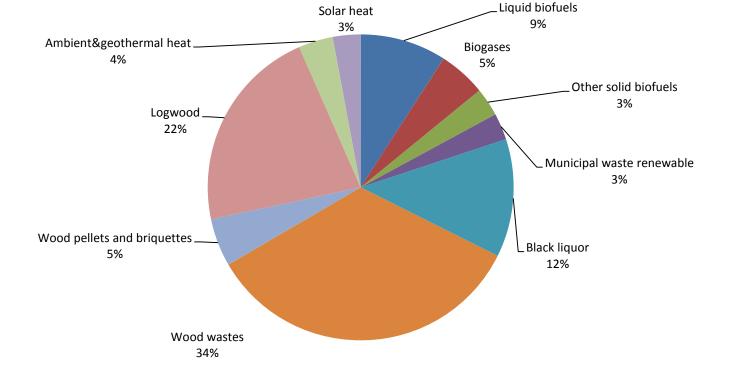
Collecting renewables non electricity data

Tricky tasks need a holistic approach

We provide information

www.statistik.at

Content



- Renewables in Austria
- Data sources
 - Supply surveys
 - Consumption surveys
- Solar energy and ambient heat
 - Modeling and implementation example solar heat
- Biofuels
 - Classification from the data collection point of view
 - Data sources-surveys
 - Data alignment
 - Data sources-modelling
 - Modeling example biomass lighted heating plants
- Conclusions

www.statistik.at

slide 3 | 16 September 2020

Renewables in Austria – Shares 2016

Gross inland consumption 2016

Renewables in Austria -What they are used for

Final energy consumption 2016 by fuels and useful energy categories for Austria (in Terajoule)

2016	Space heating and air condition	Vapor production	Industrial furnaces	Stationary engines	Traction	Lighting and computing	Electro- chemial Purposes	Total
Hard coal	228	3.472	605	0	5	0	0	4.310
Lignite	239	0	1.656	0	0	0	0	1.894
Coke oven coke	430	0	6.463	0	0	0	0	6.893
Petrol coke	0	141	1.565	0	0	0	0	1.706
Fuel oil	2.457	2.035	1.639	6	0	0	0	6.137
Gas oil	43.886	106	4.942	8	0	0	0	48.942
Diesel	0	5	3	14.796	251.791	0	0	266.595
Gasoline	0	0	1	233	64.599	0	0	64.833
Kerosene	0	0	0	26	33.126	0	0	33.152
LPG	1.516	36	1.053	601	484	0	0	3.691
Natural gas	77.331	43.309	58.445	2.469	10.752	9	0	192.315
Electricity	28.622	3.216	52.266	93.015	11.263	33.790	492	222.665
District heat	60.288	1.818	10.612	0	0	0	0	72.718
Log wood	50.567	97	6.258	0	0	0	0	56.922
Biofuels	27.902	36.666	16.603	360	22.949	0	0	104.479
Waste	1.620	3.302	7.679	0	0	0	0	12.601
Ambient and solar heat	11.306	0	5.352	0	0	0	0	16.659
Blast furnace gas	0	0	1.089	0	0	0	0	1.089
Coke oven gas	0	0	3.439	0	0	0	0	3.439
Peat	0	0	0	0	0	0	0	(
Total	306.392	94.203	179.672	111.512	394.970	33.800	492	1.121.042

Austrian Renewables Balances 1970 - 2016

in Terajoule (10 ¹² Joule)	1970	1980	1990	2000	2010	2011	2012	2013	2014	2015	2016
Indigenious production of primary fuels	123.458	161.271	209.197	278.911	364.855	346.189	396.538	405.555	394.741	398.602	417.31
Imports	501	1.217	4.438	4.945	35.318	39.982	38.889	40.737	41.072	39.561	36.414
Stock rotation	0	0	-545	0	515	-942	216	-112	46	431	-13
Exports	189	652	1.933	6.691	18.803	17.181	18.974	17.296	21.300	22.994	24.599
Gross inland consumption	123.770	161.836	211.157	277.165	381.884	368.048	416.669	428.883	414.558	415.600	428.992
Transformation input	77.417	107.999	122.061	174.200	235.328	222.042	269.237	262.919	262.179	255.378	261.15
Transformation output	0	0	0	32	9.767	9.250	11.581	10.701	11.189	11.636	10.22
Consumption of energy industries	0	0	0	0	0	0	1	1	13	0	(
Non energy use	0	0	0	0	0	0	0	0	0	0	(
Final energy consumption	46.353	53.837	89.096	102.997	156.323	155.255	159.013	176.665	163.555	171.857	178.06
of which:											
Burgenland			4.229	4.350	7.802	7.795	6.667	6.754	6.251	7.421	7.55
Carinthia			10.997	11.263	18.336	19.236	19.003	22.866	19.176	20.439	22.29
Lower Austria	-		19.272	21.386	31.019	31.058	33.265	33.440	32.446	35.420	36.40
Upper Austria			20.783	26.020	33.250	33.564	36.131	40.115	37.599	37.667	38.074
Salzburg			6.434	7.287	13.283	12.689	12.602	14.439	12.524	13.838	13.84
Styria			18.492	20.791	30.032	29.028	29.334	34.194	32.835	31.453	34.82
Tyrol			5.283	6.949	11.939	10.848	10.900	12.624	11.279	12.893	12.74
Vorarlberg			2.269	3.103	4.688	4.800	5.519	6.130	5.774	7.096	7.24
Vienna			1.337	1.849	5.975	6.236	5.591	6.102	5.670	5.629	5.072
of which:											
Agriculture	2.759	2.599	4.022	5.096	6.359	6.917	7.410	7.735	6.894	7.111	7.29
Industry	491	10.051	22.653	29.572	48.886	48.474	47.881	58.519	52.399	51.193	60.232
Traction	9	2	80	612	20.736	20.839	20.483	20.683	24.694	27.013	22.364
Services	3.620	374	2.904	5.045	6.855	7.469	7.566	6.830	8.565	9.789	9.190
Private households	39.474	40.811	59.436	62.671	73.487	71.556	75.672	82.898	71.004	76.751	78.979
of which:2)											
Transport ³)				911	21.379	21.462	21.113	21.295	25.306	27.632	22.950
Space heating and cooling, water heating				65.251	83.236	82.989	87.582	95.710	82.641	86.027	89.77
Lightning & computing				0	0	0	0	0	0	0	(
Steam production				25.087	29.698	28.112	26.832	34.014	31.042	29.501	36.762
Industry ovens				11.715	20.741	21.289	22.181	24.021	22.991	28.334	28.21
Stationary engines				33	1.269	1.402	1.304	1.625	1.576	362	360
Elektrochemical purposes				0	0	0	0	0	0	0	(

S: STATISTICS AUSTRIA, Energy statistics: Energy Balances Austria 1970 to 2016. Compiled on 15 December 2017. – Rounding differences caused by calculation. – 1) includes fuelwood, biomass, ambient energy, hydropower, wind and PV. – 2) Broken down by the structure of useful energy survey. – 3) Transport is the sum of traction and agricultural off road traction. "." data not available.

www.statistik.at

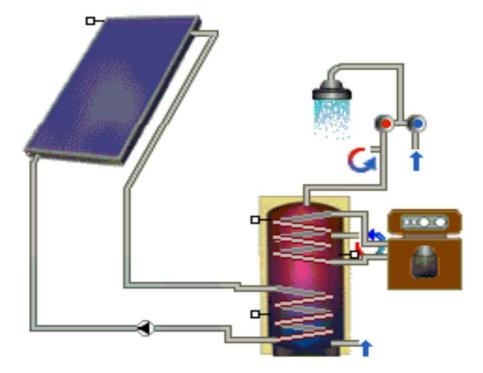
slide 5 | 16 September 2020

The sources – Supply surveys I

- Statistics Austria
 - Intrastat & Extrastat (m): Pellets, Woodchips, Logwood, Wood briquettes, Charcoal
 - Short Term Statistics (m): Pellets, Wood briquettes
- Fed. Ministry of Sustainability and Tourism
 MOS Oil (m): Bioethanol, Biodiesel blended
- E-Control
 - CHP & Electricity Survey (a): Electricity and sold CHP Heat from RES
 - MOS-Gas (m): Bio-methane injected

The sources – Supply surveys II

- UBA (Environment Agency)
 - Biofuels for transport (a): Bioethanol, Biodiesel, Veg. Oil
- Technical University of Vienna (model based)
 - > Ambient heat (a)
 - Solar heat (a)
 - > PV (a)


- Statistics Austria
 - Household Energy Consumption Survey (2y): Logwood, Pellets, Woodbriquettes, Chips, Ambient & Solar Heat
 - Material Input Survey (MIS, large industry) (a)– Biofuels (heat), Ambient & Solar Heat
 - Energy Consumption Survey Services (a): Biofuels (heat), Ambient & Solar Heat
 - Energy Consumption Survey Industries (2y): Biofuels (heat), Ambient & Solar Heat
 - Until 2012: Survey on Biomass lighted District Heating Plants
 (5y)-Biofuels (heat)

The sources – Consumption surveys II

- E-Control
 - CHP & Electricity Survey (a): Biofuels (electricity and heat)
- UBA (Environment Agency)
 - > Biofuels for transport (a): Bioethanol, Biodiesel, Veg. Oil pur
 > ETS (a): Biofuels (heat)
- Fed. Ministry of Sustainability and Tourism
 - Since 2013: Database on subsidized biomass lighted heat plants: Biofuels (heat)

slide 10 | 16 September 2020

www.statistik.at

IEA/ESTIF (European Solar Thermal Industry Federation) method for calculating SH supply

- Simple to calculate
- Takes into account all systems relevant, for the time being
- Only sales data for solar panels needed
- Follows the IRES/IEA fuel definitions

1. Solar heat supply (IEA/ESTIF methodology):

- 1. Annual survey on panels installed last year
- 2. Calculation assumptions:
 - 1. A durability of 25 years
 - 2. National yield factors calculated with the IEA/ESTIF methodology and the global irradiation of Graz (1126 kWh/m²):

unglazed: 327 kWh/m²*year glazed (DHW): 495 kWh/m²*year glazed combi: 372 kWh/m²*year

2. Solar heat consumption of households:

- 1. Biannual survey on household energy consumption:
 - 1. Solar heat for hot water only
 - 2. Solar heat for hot water and space heating
- 2. Calculation assumptions:
 - 1. Energy demand for water heating is 1 199 kWh by person living in that household and year.
 - 2. If solar is used 70% of hot water used is coming from solar heat

Data Implementation Example: Solar heat 3

- 3. If solar is used as main heating system 70% of heat is coming from solar
- If solar is used as auxiliary heating system 30%, 15% or 10%, depending on the number of auxiliary systems used, come from solar
- 5. Annual energy need for space heating in kWh by m² depending on dwelling type and construction period

Detach	ned & semi	detached l	nouses	Apartment houses						
	Construct	ion period		Construction period						
А	В	С	D	А	В	С	D			
232	166	97	44.2	182	132	96	44.2			

Construction period A: up to 1960; B: 1961 to 1990; C: 1991 to 2005; D: after 2005.

www.statistik.at

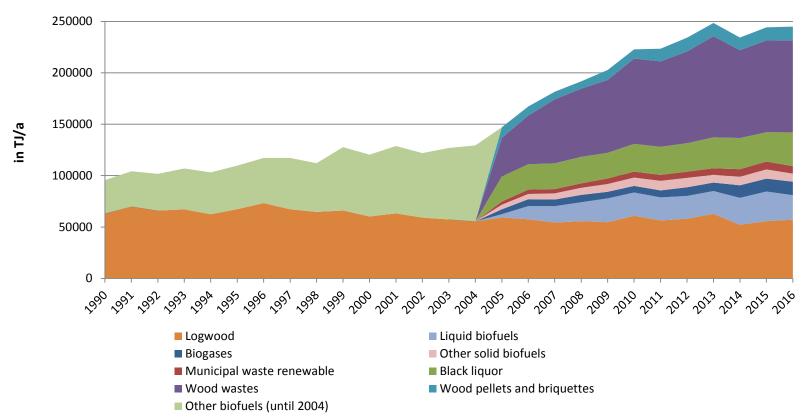
slide 14 | 16 September 2020

Supply calculation:

1 716 GWh from glazed panels of which at least 93% of the installed panel area are attributed to households

That means 1 596 GWh are produced by households.

Consumption calculation:


Households consumed 1 287 GWh for water and space heating

Conlcusion:

Taking into account the production is measured at the panel exit and given transport losses of 10% (160 GWh) than 91% of the 1 436 GWh available from panels allocated to households are really consumed.

Biofuels in Austria 1990 to 2016

Gross inland consumption of biofuels 1990 to 2016

www.statistik.at

slide 16 | 16 September 2020

- Standardised quality and constant calorific value
- Supply and consumption data available
- Standardised biofuels:
 - Biomethane injected
 - Bioethanol blended
 - Biodiesel blended
 - Wood-pellets
 - Wood-briquettes

General data problems....

- No specific surveys exist for non standardized biofuel supply like they normally do for fossil fuels.
- Production data as well as foreign trade data for such biofuels are fragmentarily, missing or are not differentiated into products for energy and non energy use.
- No satisfying stock information exists
- No exact information on non energy use of wood products e. g. for the manufacture of plywood, laminboard, particle board, fiber board and other boards and panels

Biofuels non standardised 2

..and a lot of biomass specific problems..

- 1. Diversity of the fuels
- 2. Inhomogeneous fuels
- 3. Diversity of units (m³ [scu], m³ [bv], sm³, t)
- 4. Conversion factors
- 5. Wide range of water content calorific values
- 6. Unclear boundaries between biofuels and (non renewable/hazardous) wastes

Data alignment between MIS – ETS – CHP

- This alignment starts with the reporting year 2009 and is done on enterprise and fuel level.
- This in depth comparison became necessary, because many respondents do not report in the same manner in the three surveys. To compare the survey results on sectoral level, as it was done before, caused double counting. So e.g. respondents report production residuals in one survey as industrial wastes and in the others as biomass.
- The prerequisites for this exercise are:
 - > all enterprises are clearly identified in all three datasets
 - all fuels reported in the three surveys are unambiguously allocated to each other.

Data synchronisation between MIS – ETS – CHP

- MIS data
 - Include overall energy consumption (transformation input and final energy consumption) of each enterprise in physical and monetary units.
 - > Therefore MIS (theoretically) gives **the highest quantities** of all surveys
- ETS data
 - Include all transformation inputs for electricity and heat and FEC of the participating plants on fuel level in physical and energy units.
 - Include (theoretically) the most trustable data (checked by independent experts)
 - Include additional information like composition of industrial wastes (shares of renewable and non-renewable components) and CV.
- Power plant- and CHP data
 - Include all transformation input and output quantities for all power- and CHP plants with an installed electrical capacity >= 1MW on plant and fuel level in physical and energy units.
 - Include (theoretically) the most plausible data because they are checked with the transformation efficiency.

Alignment of the main data sources for industrial energy use

MIS: overall consumption only physical MIS ETS CHP

ETS: extremely detailed fuels physical& energy

CHP: physical&energy

www.statistik.at

slide 22 | 16 September 2020

The sources – Consumption modelling

- Extrapolation of RES use for space heating for years after the last survey with heating degree days and after the next survey recalculation of the years between the two surveys with heating degree days and progressive averages.
- Split of the CHP survey data into CHP transformation, electricity only transformation and final energy consumption by following the IEA/Eurostat CHP reporting guidelines.
- Calculation of fuel input into and heat output from biomass fired district heating plants.

Biomass lighted district heating plants 1

Model assumptions

- 1. Fuel mix used in these plants is rather constant
- 2. The efficiency of the transformation process remains rather constant, too.
- 3. Heat production is correlated with installed capacity and temperature.

Model input

- 1. Annual survey of installed capacity
- 2. Continuous calculation of heating degree days.
- 3. Fuel input by fuel type into biomass lighted district heating plants and corresponding heat production on plant level 1997, 2005 and 2010. Since 2013 use annual data from a database on subsidized plants

Modeling steps until 2012

- 1. Calculation fuel input in TJ by installed MW and heating degree day for the reporting years.
- 2. Calculation of the typical fuel mix for the reporting years
- Calculation of actual heat production with the formula (for Austria 2005): Heat(kWh)= Installed MW * Actual Degree Days *0,4695 (=kWh heat output by MW_i and degree day)
- 4. Calculation of actual fuel input after the last survey with the fuel mix relations and efficiencies of the last reporting year.
- The district heat produced and fuels used between two survey years are calculated with the currently installed capacity, the respective Heating Degree Days and the moving average between two survey years.

Modeling steps since 2013

- 1. Calculation fuel input in TJ by installed MW and heating degree day for the reporting units.
- 2. Application of the results to the overall population
- 3. Calculation of the typical fuel mix for the overall population
- 4. Calculation of actual heat production Formula for Austria 2016:

Heat(kWh)= Installed MW * Actual Degree Days

*0,5721 (=kWh heat output by MW_i and degree day)

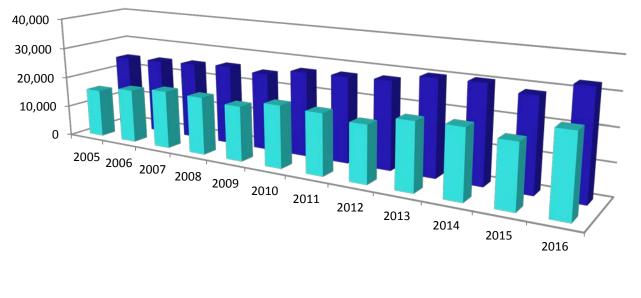
Coefficients calculated for 2005 and 2016

2005	heat MWh/ MW*HDD	bark (t / MW*HDD)	Wood chips (industry) (t/MW*HDD)	Saw dust (t/MW*HDD)	Wood chips (forestry) (t/MW*HDD)	Other biomass. (t/MW*HDD)	Straw (t/MW*HDD)	Natural gas (1 000 m³/ MW*HDD)	Fuel oil (t/MW*HDD)
В	0,4486	0,0106	0,0119	0,0018	0,1245	0,0000	0,0144	0,0002	0,0003
C	0,3593	0,0061	0,0188	0,0081	0,1009	0,0000	0,0032	0,0000	0,0008
LA	0,4521	0,0116	0,0199	0,0049	0,1308	0,0016	0,0035	0,0002	0,0014
UA	0,4259	0,0119	0,0314	0,0053	0,0998	0,0000	0,0046	0,0001	0,0002
S	0,4941	0,0240	0,0365	0,0040	0,1070	0,0000	0,0032	0,0002	0,0002
ST	0,4021	0,0192	0,0213	0,0103	0,1025	0,0009	0,0034	0,0003	0,0007
т	0,3655	0,0085	0,0334	0,0048	0,0927	0,0000	0,0006	0,0000	0,0004
V	0,4274	0,0007	0,0619	0,0006	0,0801	0,0000	0,0129	0,0002	0,0007
2016	heət MWh/MW*HDD	bark (t / MW*HDD)	Wood chips (industry) (t/MW*HDD)	Saw dust (t/ MW*HDD)	Wood chips (forestry) (t/MW*HDD)	Other biomass. (t/MW*HDD)	Straw (t/MW*HDD)	Natural gas (1 000 m³/ MW*HDD)	Fuel oil (t/MW*HDD)
В	0,5880	0,0008	0,2152	0,0116	0,0000	0,0062	0,0000	0,0032	0,0001
с	0,5283	0,0014	0,1797	0,0077	0,0009	0,0000	0,0000	0,0019	0,0018
LA	0,5951	0,0047	0,2280	0,0060	0,0026	0,0028	0,0000	0,0022	0,0003
UA	0,5814	0,0027	0,2049	0,0159	0,0000	0,0000	0,0000	0,0004	0,0001
S	0,5385	0,0068	0,1600	0,0164	0,0025	0,0000	0,0000	0,0007	0,0008
St	0,5922	0,0060	0,2206	0,0096	0,0000	0,0000	0,0000	0,0004	0,0002
т	0,5769	0,0155	0,1815	0,0234	0,0000	0,0000	0,0029	0,0012	0,0007
V	0,5321	0,0100	0,1325	0,0340	0,0024	0,0000	0,0000	0,0020	0,0009

www.statistik.at

slide 27 | 16 September 2020

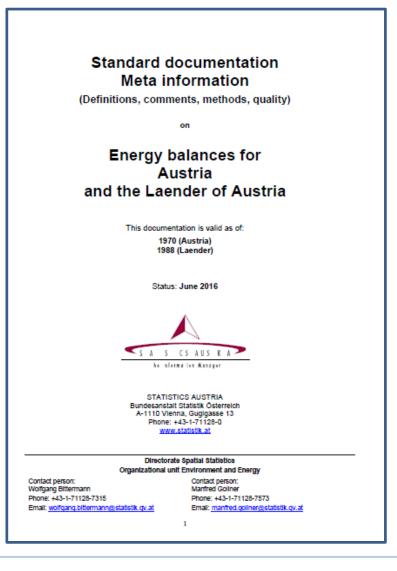
Conclusions 1



- Biofuel and wastes statistics base to a great extent on consumption data and model based calculations only.
- Wood waste, other wastes and black liquor normally are not purchased, and therefore data quality often is not the best and it is impossible to adjust the data with monetary information.
- For these reasons the data are of less quality than information about fossil fuels which base on supply and consumption data as well as on physical and monetary information.

Conclusions 2

On the other hand the consistency of time series based on surveys tells us that these statistics give good information on the development although the absolute amount cannot be verified in all cases.


Final energy consumption
Gross inland consumption

www.statistik.at

slide 29 | 16 September 2020

For more information.....

www.statistik.at

slide 30 | 16 September 2020

Please address queries to: Wolfgang Bittermann

Contact information:

Guglgasse 13, 1110 Vienna phone: +43 (1) 71128-7315 fax: +43 (1) 71128-8155 wolfgang.bittermann@statistik. gv.at

Thank you for your attention

www.statistik.at

slide 31 | 16 September 2020