

Why monitoring renewables and energy efficiency needs accurate balances data?

Roberta Quadrelli – Head, Energy balances, prices, emissions, efficiency

IEA Energy Data Centre

Beijing, 23rd to 25th May 2018

> Monitoring **renewables and energy efficiency** : **Why?**

> Reminding the key elements of the **energy balance**

> Understanding **efficiency** from the energy balance

> Understanding **renewables** from the energy balance

> Beyond energy balances: what other relevant information to collect?

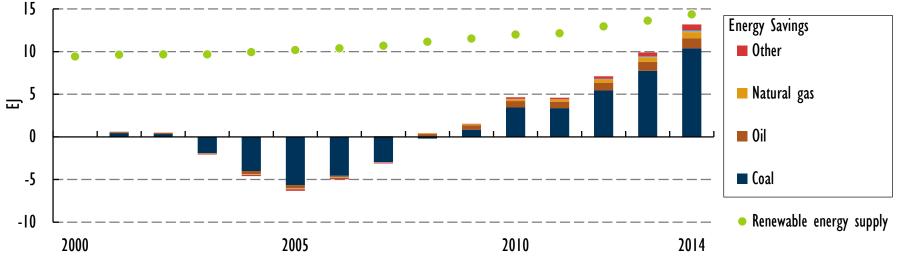
Monitoring renewables and energy efficiency: why?

How to track economic and social development indicators?

			Box 2		
	Main Economic and Social	Developme	nt Indicators f	or the 13th Five-Y	ear Plan Period
THE 13TH FIVE-YEAR PLAN FOR ECONOMIC AND SOCIAL DEVELOPMENT OF THE PEOPLE'S REPUBLIC OF CHINA	Indicator	2015	2020	5-year average [5-year cumulative total]	Type of Indicator
(2016–2020)	19. Energy consumption	n/a	n/a	[15]	
	reduction per unit of GDP (%)				Obligatory
	20. Non-fossil energy (% of primary energy consumption)	12	15	[3]	Congatory
	21. CO ₂ emissions	n/a	n/a	[18]	
	reduction per unit of GDP (%)				

Targets for 2030:

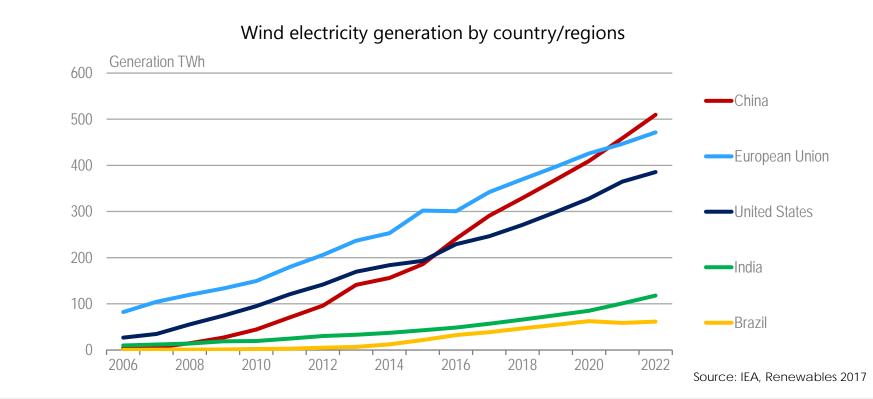
China National Determined Contribution (NDC)


- peak CO₂ emissions by 2030 at the latest
- lower the carbon intensity of GDP by 60%–65% below 2005 levels
- increase the share of non-fossil energy in total primary energy supply to around 20%

Several important targets require indicators relying on energy data

Efficiency and renewables are changing the energy system

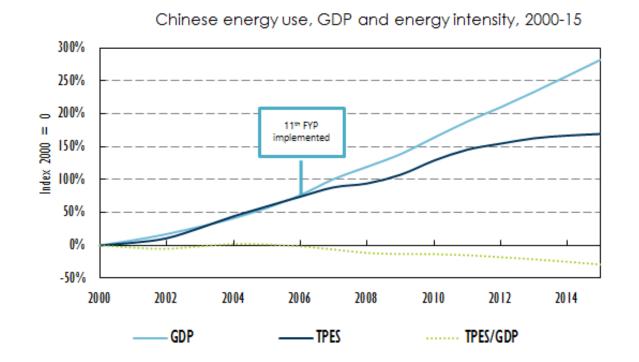
Chinese energy use, GDP and energy intensity, 2000-15



Source: IEA Energy Efficiency Market report, 2016

Dramatic progress on energy efficiency since 2006 saved 350 million tonnes of coal in 2014. Energy savings were as large as China's renewable energy supply.

China to surpass EU to become largest wind generator



China will generate 30% of global electricity from wind by 2022 but it could generate even more if grid integration challenges are addressed quickly

Policy has been the major driver of energy efficiency in China

Efficiency policies within China's 11th, 12th and 13th five year have made a significant impact. The top 1,000 and 10,000 Programmes are substantial contributors

Renewables and efficiency: core of sustainable development goals

Globally, also tracking SDG7 indicators 7.2 and 7.3 also relies on good balances data

2.27 seen between 2010 and 2010 som rais for short of the 2.1% target over the period 2010/2010 needed to achieve the 500 objective. The rate of energy efficiency improvement will not reach this level without a significant ramp-up in global policy ambition and sustained progress.

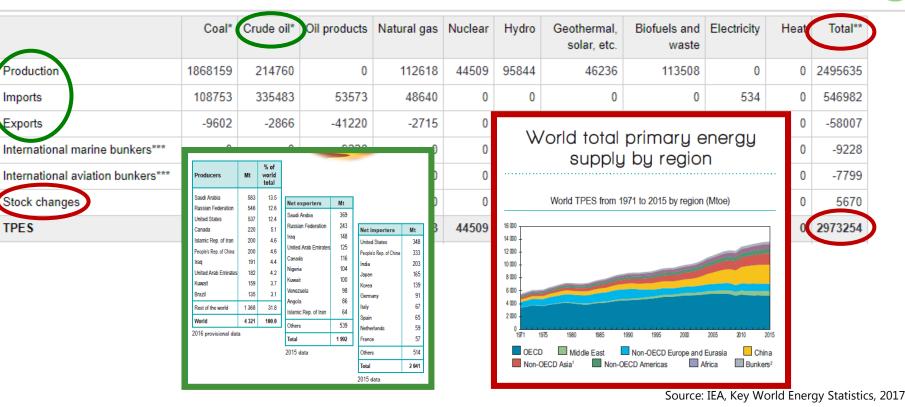
Reminding the key elements of the energy balance

	Coal*	Crude oil*	Oil products	Natural gas	Nuclear	Hydro	Geothermal, solar, etc.	Biofuels and waste	Electricity	Heat	Total**
Production	1868159	214760	0	112618	44509	95844	46236	113508	0	0	2495635
Imports	108753	335483	53573	48640	0	0	0	0	534	0	546982
Exports	-9602	-2866	-41220	-2715	0	0	0	0	-1604	0	-58007
International marine bunkers***	0	0	-9228	0	0	0	0	0	0	0	-9228
International aviation bunkers***	0	0	-7799	0	0	0	0	0	0	0	-7799
Stock changes	14642	-6238	-2734	0	0	0	0	0	0	0	5670
TPES	1981952	541139	-7407	158543	44509	95844	46236	113508	-1070	0	2973254
Transfers	-971	-1090	2490	0	0	0	0	0	0	0	429
Statistical differences	-9244	-52	2198	689	0	0	0	16	-14	0	-6407
Electricity plants	-920053	-125	-2253	-26070	-44509	-95844	-19980	-21917	502598	0	-628154
CHP plants	0	0	0	0	0	0	0	0	0	0	0
Heat plants	-121455	-67	-4625	-5263	0	0	0	-1468	0	95903	-36975
Gas works	-4777	0	0	1078	0	0	0	0	0	0	-3699
Oil refineries	0	-533291	517383	0	0	0	0	0	0	0	-15908
Coal transformation	-164982	0	0	0	0	0	0	0	0	0	-164982
Liquefication plants	-3642	2185	0	0	0	0	0	0	0	0	-1457
Other transformation	0	0	0	0	0	0	0	0	0	0	0
Energy industry own use	-56075	-4404	-30773	-21719	0	0	0	0	-56417	-11472	-180860
Losses	0	-872	-4	-1839	0	0	0	0	-25696	-1152	-29562

Columns present the "commodity balances" for all energy products

Source: IEA World Energy Balances 2017

Based on NBS data processed with IEA methodology


All data are comparable thanks to a common energy unit - Total energy can be defined

Understanding the three matrix blocks

	2015 V Indicators	Balances	Coal	Electricity	and Heat	Natural	Gas	Oil Rene	wables and W	/aste		
		Coal*	Crude oil*	Oil products	Natural gas	Nuclear	Hydro	Geothermal, solar, etc.	Biofuels and waste	Electricity	Heat	Total**
	Production	1868159	214760	0	112618	44509	95844	46236	113508	0	0	249563
	Imports	108753	335483	53573	48640	0	0	0	0	534	0	546983
Supply -	Exports	-9602	-2866	-41220	-2715	0	0	0	0	-1604	0	-5800
Sabbiy	International marine bunkers***	0	0	-9228	0	0	0	0	0	0	0	-922
	International aviation bunkers***	0	0	-7799	0	0	0	0	0	0	0	-779
	Stock changes	14642	-6238	-2734	0	0	0	0	0	0	0	567
	TPES	1981952	541139	-7407	158543	44509	95844	46236	113508	-1070	0	297325
	Transfers	-971	-1090	2490	0	0	0	0	0	0	0	429
	Statistical differences											9
	Electricity plants				nro		+ -		fla			
	CHP plants			lows	pre	sei	πε	inerg	gy flo	WS		
Heat plants			2	croc	c +b	<i></i>	- ric		rodu	icto		
Transformation -	Gas works		across the various products					icts				
	Oil refineries											0
	Coal transformation	-164982	0	0	0	0	0	0	0	0	0	-16498
	Liquefication plants	-3642	2185	0	0	0	0	0	0	0	0	-145
	Other transformation	0	0	0	0	0	0	0	0	0	0	
	Energy industry own use	-56075	-4404	-30773	-21719	0	0	0	0	-56417	-11472	-18086
	Losses	0	-872	-4	-1839	0	0	0	0	-25696	-1152	-2956
	Total final consumption	700754	3423	477009	105420	0	0	26256	90138	419401	83279	190567
	Industry	538623	2066	54758	38506	0	0	210	0	276246	55722	966131
	Transport	2112	0	262056	46602	0	0	0	2047	45440	0	20059
	Other					((-1//	- 6 61		_	
al consumption	Residential		_ I r	nree	mai	n "	DIO	CKS	of fl	ows	5	
	Commercial and public services											
	Agriculture / forestry	13637	0	17717	79	0	0	640	0	8943	25	4104
EA World Energy Balances 2017	Fishing	0	0	0	0	0	0	0	0	0	0	
A wond Energy balances 2017	Non-specified	21093	0	0	0	0	0	36	0	27499	2959	5158
ata processed with IEA methodology	Non-energy use	55589	1357	90804	9980	0	0	0	0	0	0	15773
ata processea with ilm methodology	-of which chemical/petrochemical	0	1357	55381	9980	0	0	0	0	0	0	66718

iea

1: Energy supply

"High-level" information: Total primary energy supply, production, trade, etc...

iea

2: Transformation and energy sectors

	Coal*	Crude oil*	Oil products	Natural gas	Nuclear	Hydro	Geothermal, solar, etc.	Biofuels and waste	-	Heat	Total**
Electricity plants	-920053	-125	-2253	-26070	-44509	-95844	-19980	-21917	502598	0	-628154
CHP plants	0	0	0	0	0	0	0	(0	0	0
Heat plants	-121455	-67	-4625	-5263	0	0	0	-1468	0	95903	-36975
Gas works	-4777	0	Transf	ormin	g en	erg	y sourc	es	0	0	-3699
Oil refineries	0	-533291			<u> </u>	Ĵ.	· · ·		0	0	-15908
Coal transformation	-164982	0	0	0	0	0	0	(0	0	-164982
Liquefication plants	-3642	2185	0	0	0	0	0	(0	0	-1457
Other transformation	0	0			Coarm	red pow	er plant 0	(0	0	0
Energy industry own use	Inpu (coa	t al)		Pulverizer		Generator	C	->	Out (elect	put ricit	y)

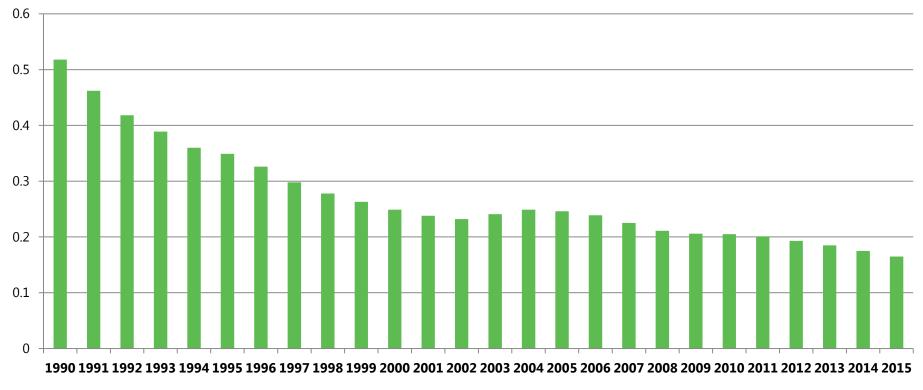
The concept of efficiency = output / input

	Coal*	Crude oil*	Oil products	Natural gas	Nuclear	Hydro	Geothermal, solar, etc.	Biofuels and waste	Electricity	Heat	Total**
Fotal final consumption	700754	3423	477009	105420	0	0	26256	90138	419401	83279	1905679
Industry	538623	2066	54758	38506	0	0	210	0	276246	55722	966131
Transport	2442	0	262056	16602	0	0	0	2047	15449	0	298596
Other	104100	0	69391	40332	0	0	26046	88091	127706	27556	483222
Residential	49185	0	35944	30102	0	0	21807	88091	65061	22409	312599
Commercial and public services	20185	0	15731	10150	0	0	3564	0	26204	2163	77996
Agriculture / forestry	13637	0	17717	79	0	0	640	0	8943	25	41041
Fishing	0	0	0	0	0	0	0	0	0	0	0
Non-specified	21093	0	0	0	0	0	36	0	27499	2959	51586
Non-energy use	55589	1357	90804	9980	0	0	0	0	0	0	157730
-of which chemical/petrochemical	0	1357	55381	9980	0	0	0	0	0	0	66718

Deliveries of energy products to all final consumers

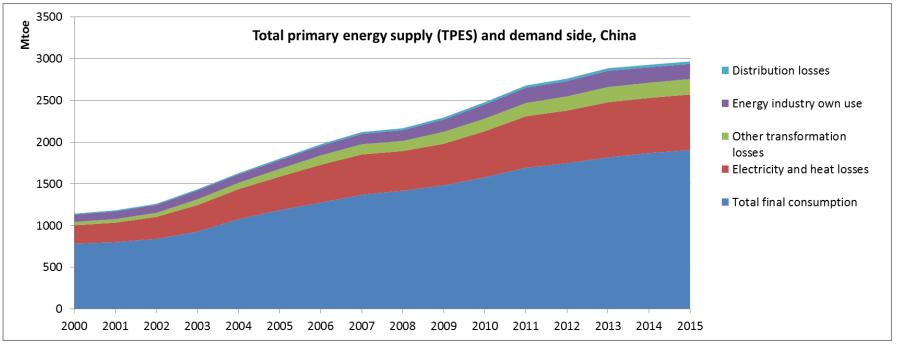
Understanding efficiency from the energy balance

Main energy-related targets in China 13th Five Year Plans


	Unit	2010	2015	2020	Growth rate(%) Type
Total primary energy production	Billion tce		3.6	4	2 (annual)Indicative
Total energy consumption	Billion tce	3.61	4	<5	<3 (annual)Indicative
Energy consumption reduction per unit of GDF (energy intensity)	° %			-15%	Mandatory
CO ₂ emission reduction per unit of GDP (carbon intensity)	%			-18%	Mandatory

Energy intensity is defined as energy / GDP, and reflects energy efficiency progress among other factors

China TPES/GDP (toe per thousand 2010 USD PPP)



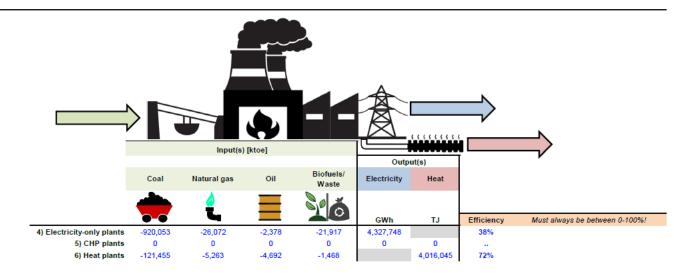
Source: IEA World Energy Balances 2017

Based on NBS data processed with IEA methodology

Understanding why TPES and energy intensity (TPES/GDP) vary

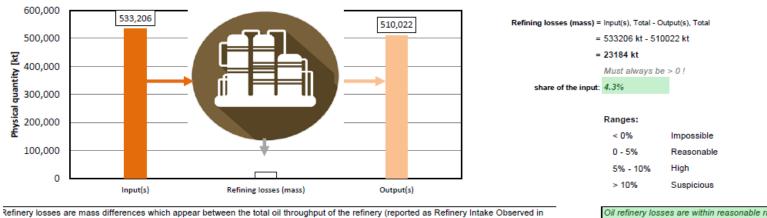
Source: IEA World Energy Balances 2017

Based on NBS data processed with IEA methodology


Overall intensity TPES/GDP depends on efficiency across all demand-side sectors: transformation/energy and final consumption

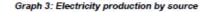
Transformation efficiency: electricity and heat generation example

Primary electricity is obtained from natural sources such as hydro, wind and solar power, whereas primary heat is obtained from geothermal and solar thermal power. Secondary electricity and heat is produced e.g by burning primary combustible fuels such as coal, natural gas, oil and renewables and wastes. The annual questionnaires classify electricity and heat generating plants into three groups:


- 1) Electricity-only plants, which generate electricity only;
- 2) Heat-only plants, which generate heat only;
- 3) Combined heat and power plants (CHP), which generate heat and electricity in a combined process.

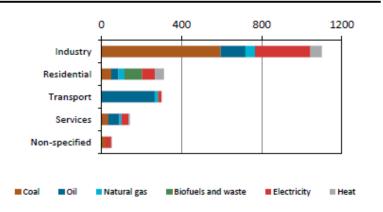
Efficiency: output/input (energy units) -- Need good calorific values data for each product. Efficiency computations help checking data quality.

Transformation efficiencies: refinery example


A refinery takes crude oil and separates it into different fractions, then converts those fractions into usable products, and these products are finally blended to produce a finished product. These products are he fuels and chemicals used every day. In a refinery, portions of the outputs from some processes are fed back into the same process, fed to new processes, fed back to a previous process or blended with other outputs to form finished products. Oil products produced and used for energy purposes must be accounted within production.

Refinery losses are mass differences which appear between the total oil throughput of the refinery (reported as Refinery Intake Observed in Fable 1) and the total gross production of finished products (reported in Table 2A). The losses arise through genuine oil losses and the conversion of refinery statistics used within the refineries to mass units. Oil refinery losses are within reasonable range.

Refinery efficiency: output/input (energy units) < 100% because of energy losses.



DEMAND

FINAL ENERGY CONSUMPTION

Total final consumption (TFC) was 1906 Mtoe in 2015. Industry is the largest energy-consuming sector at 1100 Mtoe. It represents 58% of TFC. Residential sector accounted for 16% of TFC in 2015.

1. Excludes electricity trade

2. Includes geothermal, solar, wind, tide/wave/ocean, heat and other.

Source: IEA World Energy Balances 2017

Based on NBS data processed with IEA methodology

The energy balance helps understand trends of energy use across final sectors. More data would be required to assess end-use efficiency progress

Understanding renewables from the energy balance

Targets mention "non-fossil" consumption, capacity and generation

	Main energy-related targets	in China	a 13 th Fiv	ve Yea	r Plans	
		Unit	2010	2015	2020	Growth rate(%) Type
	Non-fossil energy consumption in primary consumption	%	9.2%	6 12%	15%	Mandatory
	Non-fossil electricity installed capacity	%		35%	39%	4 Indicative
Energy mix	Non-fossil electricity generation	%		27%	31%	4 Indicative
	Natural gas consumption	%	49	6 5.9%	10%	4.1 Indicative
	Coal consumption	%	69.2%	64%	58%	-6 Mandatory
	Solar power generation capacity	GW		43.19	110	
	of which: distributed PV	GW	26	43.1	60	
Solar	Utility scale PV	GW	20	45.1	45	
	Light and heat	GW		0.1	5	
	Power generation capacity from biomass	GW		10.3	15	
	of which: Direct Combustion from traditional biomass	GW		5.3	7	
	Waste	GW		4.7	7.5	
	Biogas	GW		0.3	0.5	
Bioenergy	Biogas (methane)	bcm		19		
bioenergy	Large-scale biogas	bcm		8	6 (annually)	
	Solid biomass	Mt		8	30 (annually)	
	Bio-ethanol	Mt		2.14	(annually)	
	Bio-diesel	Mt		0.82	(annually)	

Several targets in the five-year plan rely on complete renewable energy data to be tracked

What are the renewable energy products to be included in the balance? iea

		SIEC Headings	Corre	espondences
Section/ Division/ Group	0-1	Title	CPC Ver.2	HS 2007
5		Biofuels		
51		Solid biofuels		
511		Fuelwood, wood residues and by-products		
	5111	Wood pellets	39280*	4401.30*
	5119	Other fuelwood, wood residues and by-products	03130, 31230, 39280*	4401.10, 4401.21, 4401.22, 4401.30*
512	5120	Bagasse	39140*	2303.20*
513	5130	Animal waste	34654*	3101*
514	5140	Black liquor	39230*	3804.00*
515	5150	Other vegetal material and residues	01913, 21710, 34654*, 39120*, 39150*	0901.90*, 1213, 1802*, 2302*, 2304, 2305, 2306, 3101
516	5160	Charcoal	34510	4402
52		Liquid biofuels		
521	5210	Biogasoline	34131*, 34139*, 34170*	2207.20*, 2905.11*, 2905.13*, 2905.14*, 2909.19*
522	5220	Biodiesels	35490*	3824.90*
523	5230	Bio jet kerosene		
529	5290	Other liquid biofuels		
53		Biogases		
531		Biogases from anaerobic fermentation		
	5311	Landfill gas	33420*	2711.29*
	5312	Sewage sludge gas	33420*	2711.29*
	5319	Other biogases from anaerobic fermentation	33420*	2711.29*
532	5320	Biogases from thermal processes		

		SIEC Headings	Corresp	ondences
Section/ Division/ Group	Class		CPC Ver 2	HS 2007
62		Municipal waste		
620	6200	Municipal waste	39910	3825.10
7		Electricity		
70	(Electricity		
700	7000	Electricity	17100	2716
8		Heat		
80		Heat		
800	8000	Heat	17300	2201.90*

Source: United Nations International Recommendations for Energy Statistics (IRES) https://unstats.un.org/unsd/energy/ires/IRES-web.pdf

Refers to SIEC, Standard International Energy products Classification

It is important to collect data for all renewable products (biofuels) Also: electricity heat can be generated from renewables.

© OECD/IEA 2018

Biofuels in the energy balance for China

l	iea)

ktoe	Municipal waste (ren)	Primary solid biofuels	Biogases	Biogasoline	Biodiesels	Bio jet kerosene	Charcoal
Production	C	99222	7447	1344	. 703	C	0
Imports	C	0	0	C	0	C	0
Exports	C	0	0	C	0	C	0
Stock changes	C	0	0	C	0	C	0
Total primary energy supply	C	99222	7447	1344	. 703	c	0
Electricity plants	C	-18125	0	C	0	C	0
CHP plants	C	0	0	C	0	C	0
Heat plants	C	-453	0	C	0	C	0
Total final consumption	C	80644	7447	1344	. 703	C	0
Industry	C	0	0	C	0	C	0
Transport	C	0	0	1344	. 703	C	0
Domestic aviation	C	0	0	C	0	C	0
Road	C	0	0	1344	. 703	C	0
Rail	C	0	0	C	0	C	0
Residential	C	80644	7447	C	0	C	0
Services	C	0	0	C	0	C	0
Agriculture/forestry/fishing	C	0	0	C	C	C	0

Source: IEA World Energy Balances 2017, Based on NBS data processed with IEA methodology

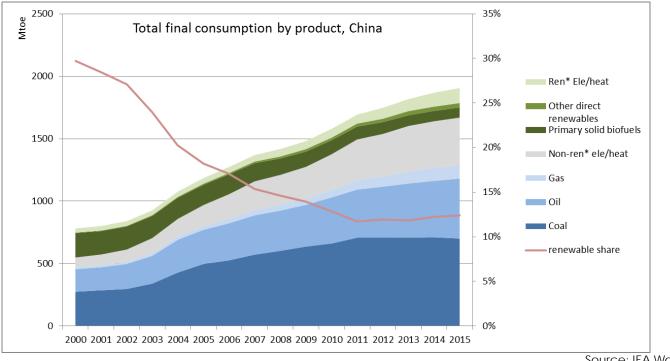
Renewable energy products are used directly across all transformation and consumption sectors. Are the data complete across products and sectors?

What are the renewable sources of electricity and heat?

ELECTRICITY Unit: MWh	HEAT Unit: TJ	-
Total	Total	Ţ
Hydro	Geothermal	†
Hydro-1 MW	Solar thermal	Ť
Hydro 1-10 MW	Industrial Waste	Ţ
Hydro 10+ MW	Municipal waste (renew.)	†
Pumped hydro	Municipal waste (non-renew)	1
Geothermal	Solid biofuels	1
Solar photovoltaic	Biogases	Ţ
Solar thermal	Biodiesels	Ţ
Tide, wave and ocean	Other liquid biofuels	1
Wind		=
Industrial waste		
Municipal waste (renew.)		
Municipal waste (non-renew)		
Solid biofuels	Source: IEA Renewables questionnaire:	nnaires/Renewables guestionnaire instructions 2016.pdf
Biogases	http://www.iea.org/media/statistics/question	mailes/Renewables_questionnaire_instructions_2020.par
Biodiesels		
Other liquid biofuels		

Data from all sources need to be collected to produce a complete energy balance

Electricity generation from non-combustible renewables in the energy balance

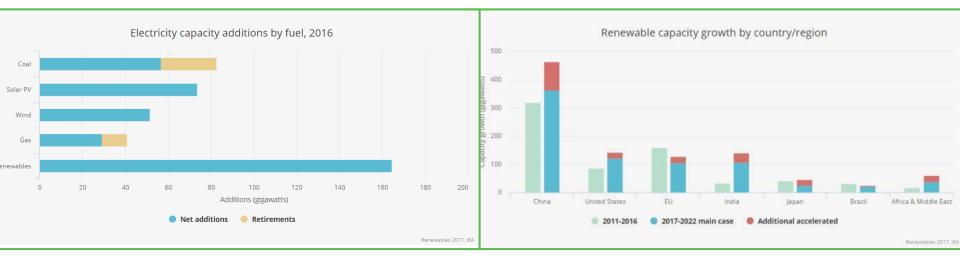

			China					
ktoe	Hydro	Geothermal	Solar photovoltaics		Tide, wave and ocean	Wind	Electricity from non- comb. renewables	
Production	95844	5059	3889	21311	1	15976	0	0 0
Imports	0) 0	0 0	0	0 0	0	0	0 534
Exports	0) 0	0 0	0	0 0	0	0	0 -1604
Total primary energy supply	95844	5059	3889	21311	L 1	15976	0	0 -1070
Transformation processes	-95844	-107	-3889	-7	-1	-15976	115824	4 502598
Main activity producer electricity plants	-95844	-107	7 O	-7	7 -1	-15976	111935	5 485850
Autoproducer electricity plants	0	0 0) -3889	0) 0	0	3889	9 16747

Source: IEA World Energy Balances 2017, Based on NBS data processed with IEA methodology

Generation from all renewable sources contributes to the total electricity generation

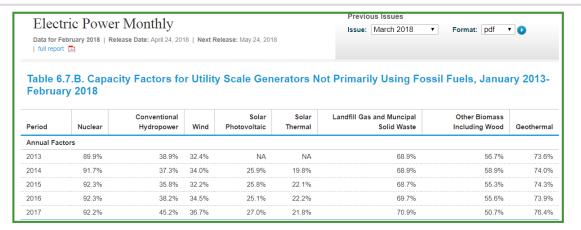
What is the share of renewables in final consumption for China?

* IEA estimation based on Global Tracking Framework methodology

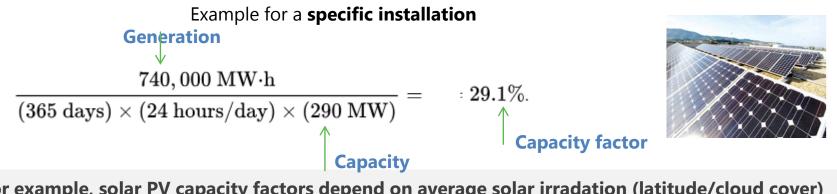

Source: IEA World Energy Balances 2017, Based on NBS data processed with IEA methodology

Renewables in final consumption include direct use and the renewable fraction of electricity/heat

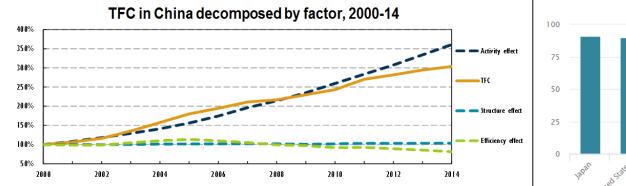
Beyond energy balances: what other relevant information to collect?



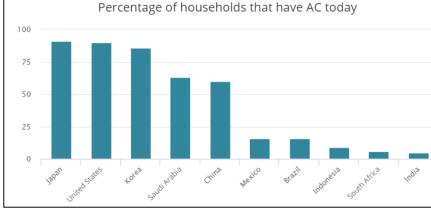
Source: IEA Renewables 2017


It is important to track installed and retired capacities by size and type

Capacities relate to generation through "capacity factors"



For example, solar PV capacity factors depend on average solar irradation (latitude/cloud cover) and operational conditions


Across all of China's end-use sectors, energy efficiency improved by more than 19% since 2000 and the pace of change appears to be quickening.

Source: IEA Energy Efficiency 2016

Source: IEA The future of cooling, 2018

End-use data across sectors of final consumption help understand demand drivers

iea

The importance of good balances to monitor efficiency and renewables

- Energy balances are a key piece of information to track energy targets
- Energy balances are essential to understand efficiency of energy use across transformation and consumption sectors – therefore energy intensity trends
- Complete energy balances across energy sources are essential to track the change in renewable shares across sectors.
- Data collection following coherent methodologies enhances comparability of energy balances across regions and countries

The IEA is committed to facilitate national work and exchange across countries, with a view to strengthening the long-term institutional capacities

