Collecting energy efficiency data for transport

Roberta Quadrelli - Head, Energy balances, prices, emissions, efficiency
IEA Energy Data Centre

Beijing, 23rd to 25th May 2018

IEA
1. Why are transport efficiency indicators important?

2. What data do we need for transport efficiency indicators?

3. Collecting the data: principles and country examples
Why are transport efficiency indicators important?
World energy consumption in transport grows fast

World total final consumption by sector, 2015

Source: IEA World Energy Balances, 2017
Energy consumption in transport sector

World transport consumption by source, 2015

- Oil
- Gas
- Biofuels
- Electricity
- Other

World transport by sub-sector, 2015

- Road
- World aviation bunkers
- World marine bunkers
- Domestic aviation
- Pipeline transport
- Rail
- Domestic navigation
- Non-specified (transport)

Source: IEA World Energy Balances, 2017
Basic transport energy consumption data are available

In order to compile annual energy balances, most statistical offices collect:

- **Total** annual energy consumption in transport
- Split by **fuel**
- Split by **sub-sector/mode** (road, rail, navigation, aviation)

Data currently available provide a high level view on transport
What else do we need to know?

• What is the split between passenger transport and freight transport?

• How much energy is spent in my country to transport one passenger on a distance of one kilometer?

• How does it compare to other countries in my region?

• What consumes less energy per km to travel in my country – a bus, a car or a train?

• Etc.
With additional data we can see where energy is used.

Figure 12. Energy consumption in transport in IEA, 2013

- **Road**: 91%
- **Passenger cars**: 60%
- **Freight road**: 28%
- **Buses**: 2%
- **Motorcycles**: 0.6%
- **Domestic air**: 5%
- **Domestic water**: 2%
- **Rail**: 2%

Source: IEA Energy Efficiency Indicators, 2016
Energy by end use: examples

• France

Largest end-uses by sector, 2013

- Residential: 29%
- Services: 16%
- Manufacturing: 22%
- Transport: 28%
- Ferrous metals: 4%
- Other industries: 5%
- Agriculture: 3%
- Residential space heating: 20%

• United States

Largest end-uses by sector, 2014

- Residential: 20%
- Transport: 40%
- Passenger cars*: 20%
- Mining: 5%
- Residential space heating: 9%
- Other industries*: 7%
- Manufacturing: 18%
- Chemicals: 4%
- Services: 16%

Source: IEA Energy Efficiency Indicators, 2016
Transport activity by mode/vehicle type: examples

Source: IEA Energy Efficiency Indicators, 2016
*Transport excludes international marine and aviation bunkers, pipelines, and when possible fuel tourism; pkm refers to; passenger cars includes cars, sport utility vehicles and personal trucks;
Energy intensities in passenger transport: examples

Source: IEA Energy Efficiency Indicators, 2016

*Transport excludes international marine and aviation bunkers, pipelines, and when possible fuel tourism; pkm refers to; passenger cars includes cars, sport utility vehicles and personal trucks;.
What data do we need for transport efficiency indicators?
Energy consumption data:
- Transport segment
 - passenger
 - freight
- Transport modes
 - road,
 - rail,
 - air,
 - water,
 - etc.

Activity data:
- Vehicle stocks
- Passenger-kilometers
- Tonne-kilometers
Selected modes/vehicle types by segment and sub-sector

<table>
<thead>
<tr>
<th>Sub-sector</th>
<th>Passenger</th>
<th>Freight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Road</td>
<td>Powered 2- to 4- wheelers</td>
<td>Freight light-duty vehicles</td>
</tr>
<tr>
<td></td>
<td>Passenger light-duty vehicles (PLDVs)</td>
<td>Heavy-duty vehicles (HDV)</td>
</tr>
<tr>
<td></td>
<td>Buses</td>
<td>Other</td>
</tr>
<tr>
<td>Rail</td>
<td>Passenger trains</td>
<td>Freight trains</td>
</tr>
<tr>
<td>Air</td>
<td>Passenger airplanes</td>
<td>Freight airplanes</td>
</tr>
<tr>
<td>Water</td>
<td>Passenger ships</td>
<td>Freight ships</td>
</tr>
</tbody>
</table>

Data requirements - activity

Passenger transport

<table>
<thead>
<tr>
<th></th>
<th>Road</th>
<th>Rail</th>
<th>Waterways</th>
<th>Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personal cars</td>
<td>Passenger</td>
<td>Passenger</td>
<td>Passenger</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trains</td>
<td>Ships</td>
<td>Airplanes</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Buses</td>
<td></td>
</tr>
<tr>
<td>Motorcycles</td>
<td></td>
</tr>
</tbody>
</table>

- Passenger-kilometres (gasoline, diesel, LPG, ...)
- Vehicle kilometres (gasoline, diesel, LPG, ...)
- Number of vehicles in use (gasoline, diesel, LPG, ...)

Freight transport

<table>
<thead>
<tr>
<th></th>
<th>Road</th>
<th>Rail</th>
<th>Waterways</th>
<th>Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trucks</td>
<td></td>
<td></td>
<td>Freight</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ships</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Airplanes</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>

- Tonne-kilometres
- Tonnes
- Number of vehicles in use

Equations

\[
\text{pkm} = \text{vkm} \times \text{occupancy} = \text{stocks} \times \text{average mileage} \times \text{average occupancy}
\]

Vehicle stocks

- Mostly available in many countries (e.g. Ministries, Statistical offices)
- Can be estimated using vehicle data base
- Vehicle classification is not the same by countries

Average mileage & occupancy (load)

- Rarely available
- Can be found in household surveys, travel diaries, odometer readings in vehicle database, public transport utilities
- Often estimated
Activity data for efficiency calculation in transport

- **Passenger-km or tonne-km**
- **Vehicle stock**
- **Distance travelled**
- **Occupancy**
- **Load factor**

Collecting the data: principles and country examples
Where to get data?

- Administrative sources
- Surveys
- Measuring/metering
- Modelling

* Collecting additional data on vehicle sales can be extremely useful to validate/complement stock information

IEA Country practice database: https://www.iea.org/eeindicatorsmanual/
Examples of methods for energy data

<table>
<thead>
<tr>
<th>Data</th>
<th>Source</th>
<th>Methodology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total transport consumption</td>
<td>National energy balance</td>
<td>Administrative sources</td>
</tr>
<tr>
<td></td>
<td>National energy statistics</td>
<td>Modelling</td>
</tr>
<tr>
<td>Consumption by sub-sector</td>
<td>National energy balance</td>
<td>Administrative sources</td>
</tr>
<tr>
<td></td>
<td>National energy statistics</td>
<td>Mobility surveys</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modelling</td>
</tr>
<tr>
<td>Consumption by segment</td>
<td></td>
<td>Mobility surveys</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modelling</td>
</tr>
<tr>
<td>Consumption by vehicle type</td>
<td></td>
<td>Mobility surveys</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modelling</td>
</tr>
</tbody>
</table>

Examples of methods for activity data

<table>
<thead>
<tr>
<th>Data</th>
<th>Source</th>
<th>Methodology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GDP, population</td>
<td>National statistics offices</td>
<td>Administrative sources</td>
</tr>
<tr>
<td>Vehicle-km (vkm)</td>
<td>Vehicle registers/Roadworthiness testing services/Inspecting organisations</td>
<td>Measurements: odometer readings</td>
</tr>
<tr>
<td></td>
<td>Municipalities/Transport authorities</td>
<td>Measurements: road traffic count</td>
</tr>
<tr>
<td></td>
<td>National and international databases</td>
<td>Administrative sources</td>
</tr>
<tr>
<td></td>
<td>Transport ministries</td>
<td>Mobility surveys</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modelling</td>
</tr>
<tr>
<td>Passenger-km (pkm)</td>
<td>National and international databases</td>
<td>Administrative sources</td>
</tr>
<tr>
<td></td>
<td>Transport ministries</td>
<td>Mobility surveys</td>
</tr>
<tr>
<td>Tonne-km (tkm)</td>
<td>National and international databases</td>
<td>Administrative sources</td>
</tr>
<tr>
<td></td>
<td>Transport ministries</td>
<td>Mobility surveys, freight surveys</td>
</tr>
</tbody>
</table>
Administrative sources

- **Annual fuel use from national energy balances** (collected via questionnaires sent to ministries and national statistical offices)
- **Activity statistics from transport operators and government agencies** (e.g. railway operators)
- **Vehicle registration data, with detailed characteristics from respective government bodies and the private sector** (e.g. associations of vehicle manufacturers)
- **Vehicle import/export data, with detailed characteristics** (e.g. from trade offices/border control services/private sector vehicle trade associations)
- **Vehicle characteristics (by size/fuel) from government organisations** (e.g. US EPA or EU EEA) and comparative studies issued by NGOs
- **Studies on: mode share, travel, trips, fuel content, fuel consumption, travel patterns..**

Great way to get comprehensive, often official data, however:
- **Collection methodology (and data quality) sometimes unclear**
- **Comparisons between providers may be difficult**
Examples of administrative sources: Japan

Sources:
- Government statistics office
- Manufacturers
- International organizations

Manual for Passenger vehicles average fuel economy performance calculation
Surveys

• National travel survey
• Survey of fleets, trucking companies
• Observational (e.g. roadside) surveys
• Household surveys, focus groups

Pros:
• Data collection via direct observation or questionnaires on travel activities, energy use, etc.
• Can provide very rich information, useful for understanding variation, correlations, and other aspects of the sample
• The people

Cons:
• Can be labour intensive, require large sample sizes, etc.
• Estimates, not hard data
Examples of surveys: Australia

<table>
<thead>
<tr>
<th>Format</th>
<th>Elements Collected</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper form sent by mail</td>
<td>Vehicle fuel efficiency Type and volume of annual fuel consumed Distance travelled Vehicle size (weight/capacity/volume) Vehicle age group</td>
<td>2 years</td>
</tr>
</tbody>
</table>

Mandatory survey to: Registered road vehicle owners (government and private)

Measuring and metering

- Direct observation
- Can use existing metering systems or create new ones
 - Odometers
 - Roadside car counters
 - Vehicle fuel economy testing
 - GPS data and vehicle location monitoring
 - Vehicle fuel economy computers (in use performance)
 - Portable Emissions Monitoring (PEMS)
 - Speed detection systems
 - Atmospheric concentration monitoring

Typically reliable but often expensive
- Based on scientific and replicable tests
- Sample size and data processing requirements affect costs
Measuring / metering example: Canada (1)

Canadian Vehicle Use Study (CVUS) by Transport Canada Vehicles equipped with GPS and a screen so that driver inputs some information regarding the trip.

Data collected not only for energy purposes: “The electronic data logger also uses the GPS technology and records the spatial coordinates that could be used in analysis of traffic congestion, road safety and infrastructure planning”

Elements collected:

- Trip patterns over time
- Fuel consumption over time
- Carrier utilisation pattern and impact on fuel economy
- Impact of fuel switching on vehicle fuel economy
Measuring / metering example: Canada (2)

Canadian Vehicle Use Study

- The logger device records accurate vehicle activity at one-second intervals (e.g. distance, time, speed, fuel, etc.) directly from the vehicle’s engine.
- The logger touch screen captures the remaining trip questions.
 - Light: Driver Age/Sex, # Passengers, Trip Purpose, Fuel Information
 - Heavy: Trip Purpose, Facility Type (Origin), Configuration, Trailer Style, Cargo (Weight/Volume), Cargo Type (Best Description)
Canadian Vehicle Use Study

- The logger is also easy to install by connecting the logger to the vehicle’s connector socket via a 16-pin (SAE J1979 Standard) or 9-pin connector cord (SAE J1939 Standard) usually located under the dashboard or behind the driver’s seat.

- Should the connector socket not use a 16 or 9 pin connector cord, the logger can be connected to the cigarette lighter via a 12 volt connector cord adapter.
Sound modelling of transport energy demand requires extensive data gathering efforts

Mileage (Activity)
- Total mileage in vehicle kilometers (vkm)

Vehicle stock (Structure)
- Of cars, buses, light commercial vehicles and heavy duty vehicles
- With split for diesel and gasoline powertrains

Average specific consumption (Intensity)
- Specific energy use (l/100km)

Transport fuel consumption

- Combine official statistics with data from state companies (commercial vehicles) and insurance companies (passenger vehicles)

- Combine official stock statistics and data from electronic registry
 - Data adjustment based on scrappage assumptions

- Obtain data on fuel economy from European Environment Agency (EEA)

Modelling example: Ukraine - State Road Transport Research Institute (Kiev)
Collecting data for transport efficiency indicators

• Transport efficiency requires detailed monitoring

• Energy efficiency indicators are a good framework to monitor the sector

• Data needs to be collected for energy and activity, across modes and vehicle types

• Countries are using a variety of methodologies to collect data: administrative sources, surveys, metering and modelling

The IEA is committed to facilitate national work and exchange across countries, with a view to strengthening the long-term institutional capacities