

System of Environmental Economic Accounting

Overview of the Ecosystem of environmental-economic accounting (SEEA)

United Nations Statistics Division

International Seminar on Natural Capital Accounting

12-14 November 2019, Beijing, China

Outline

- General introduction to the System of Environmental Economic Accounting (SEEA)
- Introduction to SEEA Central Framework
- Introduction to SEEA Experimental Ecosystem Accounting
- Overview of the SEEA EEA accounts

General Introduction to the System of Environmental Economic Accounting (SEEA)

SEEA as supporting framework

SEEA uses the accounting approach to integrates many data sets

- SEEA accounts can rely up to numerous data sources, covering such areas as
 - o energy
 - o environment
 - o agriculture
 - o economy
 - o ecosystems
- These data sources are combined to produce an integrated set of accounts and develop policy relevant indicators

From data silos to integrated information

The System of Environmental-Economic Accounting (SEEA)

The SEEA is the statistical framework to measure the environment and its interactions with economy.

- The **SEEA Central Framework** was adopted as an international statistical standard by the UN Statistical Commission in 2012.
- The SEEA Experimental Ecosystem Accounting complements the Central Framework and represent international efforts toward coherent ecosystem accounting.
- SEEA Applications and Extensions helps compilers and users of SEEA accounts understand how the accounts can be used in decision making, policy review and formulation, analysis and research.

The SNA and SEEA: Systems of integrated information

SEEA

One Environment: Two perspectives

CENTRAL FRAMEWORK Assets

Timber

SEEA

Water

Fish

ECOSYSTEM ACCOUNTING Services

Forests e.g. flood control

e.g. water purification

Rivers

Coasts e.g. recreation

SEEA Conceptual Framework

SEEA

F

SEEA-CF (Central Framework)	 Assets Physical flows Monetary flows 	 Minerals & Energy, Land, Timber, Soil, Water, Aquatic, Other Biological Materials, Energy, Water, Emissions, Effluents, Wastes Protection expenditures, taxes & subsidies
SEEA Water; SEEA Energy; SEEA Agriculture, Forestry and Fisheries	Add sector detail	 As above for Water Energy Agricultural, Forestry and Fisheries
SEEA-EEA (Experimental Ecosystem Accounting)	Adds spatial detail and ecosystem perspective	Extent, Condition, Ecosystem Services, Thematic: Carbon, Water, Biodiversity

The SEEA Central Framework Accounts

1. Stock accounts for environmental assets: natural resources and land

- physical (e.g. fish stocks and changes in stocks) and/or monetary values (e.g. value of natural capital, depletion)
- **2. Flow accounts:** supply and use tables for products, natural inputs and residuals (e.g. waste, wastewater) generated by economic activities.
 - physical (e.g. m³ of water) and/or monetary values (e.g. permits to access water, cost of wastewater treatment, etc.)
- **3. Activity / purpose accounts** that explicitly identify environmental transactions already existing in the SNA.
 - e.g. Environmental Protection Expenditure (EPE) accounts, environmental taxes and subsidies

4. Combined physical and monetary accounts that bring together physical and monetary information for derivation indicators, including depletion adjusted aggregates

Ecosystem Accounting model

SEEA Experimental Ecosystem Accounting

Ecosystem accounting is spatial

- Ecosystems are different and function differently depending on **where** they are
- Their capacity to supply services depends on their **location**
- The benefits of many services depends on whether or not the ecosystems are **accessible**
- Therefore...Ecosystem accounting needs to integrate **spatial** and **non-spatial** data
- For example, tropical forest vs. Kruger national park.
- Use of Geographic information systems (GIS)
 - > Manage spatial information as layers
 - > Tools to integrate spatial information
 - Generate tables based on common properties (e.g., land cover and land cover change)

SEEA EEA – set of accounts

SEEA-EEA accounts, tools and linkages

1. Ecosystem extent account

- What?
 - National coverage of terrestrial, freshwater, coastal and marine areas
 - Mutually exclusive and exhaustive coverage
- Why?
 - Land management, conservation policies
 - Spatial foundation for other accounts
 - \rightarrow basis for allocating macro data to spatial units
 - Builds on SEEA CF (land, forest, water)

1. Ecosystem extent account

What does an Extent Account look like?

1. Ecosystem extent account

Example: Ecosystem map of Europe

6/2015, European Environment Agency

Ecosystem extent account, Netherlands, 2006 - 2013

Ecosystem Unit	Area (km2)	Area (percentage)				
	2006	2013	Δ	2006	2013	Δ
Agriculture	19174	18811	-363	46,16	45,29	-0,87
Forest	3207	3216	8	7,72	7,74	0,02
Heath	394	427	33	0,95	1,03	0,08
Sand	356	358	2	0,86	0,86	0,00
Wetlands	461	580	119	1,11	1,40	0,29
Other nature	4061	4007	-54	9,78	9,65	-0,13
Public green areas	710	708	-1	1,71	1,70	0,00
Built-up and paved	5236	5410	175	12,60	13,03	0,42
Inland water	4088	4199	111	9,84	10,11	0,27
Sea	3846	3815	-31	9,26	9,18	-0,08
Unknown/null	6	8	2	0,01	0,02	0,00
The Netherlands	41539	41539	0			0,00

2. Ecosystem condition account

• What?

> **Ecosystem condition** reflects the overall quality of an ecosystem asset, in terms of its characteristics.

• Why?

- Policies to limit degradation of natural heritage, rehabilitation of degraded ecosystems
- > Links to capacity to produce services (Services Supply)
- > Indicators:
 - ⁻ Indices of condition \rightarrow change over time \rightarrow where changes
 - Good/bad condition (exceeding "safe" levels) → where

2. Ecosystem condition account

Maps

Ē

Tables

H H H	Carbon	Class	Variables		Ecosystem types					
				Ecosystem type 1		Ecosystem type 2				
				Year 1	Year 2	Year 3	Year 1	Year 2	Year 3	
	Water	Class 1	Variable 1							
			Variable 2							
			Variable 3							
	Soil	Class 2	Variable 4							
	3011		Variable 5							
			Variable 6							
	Biodiversity	/								
	Vegetation		1							
			Scaling & a	ggregatio	on					

Example: soil organic matter in forests

Soil organic matter content

Example: Condition account for Dutch forests, 2013

	Indicator	Unit		Coniferous forest	Mixed forest	Mixed forest (Dunes)
EXTENT						
Extent		ha	109,142	81,923	118,571	15,943
Shrub cov Low vege Carbon st Protected EHS) Living Pla Character Ecosyster	Tree cover	%	54	64	64	32
	Shrub cover	%	10	6	7	9
	Low vegetation cover	%	28	24	23	43
	Carbon stock in biomass	Mton C	6.8	5.1	7.4	1.0
	Protected areas (Natura2000, EHS)	% of area	16	44	38	
	Living Planet Index	Index 2000=100		54		
	Characteristic species	Index intact=100		46.0		
	Ecosystem quality	% of area with ≥50% of qualifying species		63.5		
	Habitat structure and function		Unf	Unfavourable /bad		
	Soil organic matter	% of area with <3% SOM	17	34	24	92
	Air pollution – PM10	µg PM ₁₀ /m ³	19.9	20.2	20.1	. 17.2
	Air pollution – PM2.5	$\mu g PM_{2.5} / m^3$	12.8	13.0	12.9	10.8
	Air pollution – NO2	$\mu g NO_2 / m^3$	16.0	15.7	15.5	12.3
	Air Pollution – SO2	$\mu g SO_2 / m^3$	0.9	0.8	0.8	1.2
PRESSURE	Urbanisation	% paved surface	13	6	8	9
	Temperature change	°C increase	0.10	0.02	0.05	0.04
	Acidification	mol H⁺/ha/ yr	2368	2724	2663	1887
	Eutrophication	mol N/ha/ yr	1713	2025	1982	1220
	Drainage organic soils	cm	67	97	85	29

3. Ecosystem Services Supply & Use

- What?
 - Physical flows of "final" ecosystem services from ecosystems to beneficiaries
 - Directly used by (or affect) people
- Why?
 - Inform policies of contribution of ecosystems to human well-being
 - Assess trade-offs between development and conservation
 - Link to standard economic production measures in SNA

Types of ecosystem services

Provisioning Services

= goods that can be harvested from, or extracted from ecosystems Example: providing fish for fisheries, or providing wood for timber harvest

Regulating Services

 the regulation of climate, hydrological, ecological and soil processes

Example: pollination, carbon sequestration, flood control

Cultural Services

 the non-material benefits provided by ecosystems Example: recreation, tourism, providing a setting for cultural or religious practices

3. Ecosystem Services Supply & Use

What does an Ecosystem Service Supply Account look like?

Maps

Tables

Example: Central Kalimantan

Model used

Look Up Tables (every land cover class is attributed a specific carbon storage value)

Kriging (values are interpolated from samples)

Source: Sumarga and Hein, 2014

4. Valuation

- What is the purpose?
 - > To integrate environmental issues in economic decision making and development planning
- What are we trying to value?
 - > Ecosystem services
 - Flows: during the year
 - > Ecosystem capital
 - Assets: value at beginning/end of year and changes therein
 - Degradation of ecosystems
 - The decline in the condition of ecosystem assets as a result of economic and other human activity

Revision of the SEEA Experimental Ecosystem Accounting

- Launched in March 2018 with the aim to finish by the end of 2020
 - > For endorsement by UN Statistical Commission in March 2021
- Engagement with various stakeholders wide engagement of various communities, including ecologists, environmental economists, earth observation, etc.
- Seek for broad involvement of partners and experts in the process in the first year over 80 experts contributed to drafting of the discussion papers
- Ambition is to elevate it to an agreed methodological document international statistical standard
- Process aligned with the post-2020 global biodiversity framework, review of SDG and climate change process

Revision process: keystones & timeline

SEEA Implementation

Implementation of the SEEA

- Implementation strategy (2013) objectives:
 - Adopt the SEEA as the measurement framework for sustainable development
 - > Mainstream SEEA implementation in countries
 - Target 100 countries by 2020 for implementation of SEEA Central Framework
 - Target 50 countries by 2020 for implementation of SEEA Experimental Ecosystem Accounting
- Setting up country programmes

SEEA Around the World

Capacity building & training

- Blended approach to training:
 - 1. Online course
 - 2. In-person training
 - 3. Follow-up phase
- UNSD eLearning platform (<u>https://elearning-cms.unstats.un.org/</u>):
 - > SEEA Central Framework (Arabic, English, Russian, French)
 - > Water Accounts (English)
 - > Energy accounts (English, Russian)
 - > Ecosystem Accounts (English, Spanish, French soon)

THANK YOU seea@un.org // https://seea.un.org/

